[1 ] P. Mokhtary, F. Ghoreishi, Error analysis of the generalized Jacobi Galerkin method in
nonlinear fractional differential equations, Progress in Fractional Differentiation &
Applications, Accepted.
[2] H. Ranjbar and F. Ghoreishi, A Gaussian quadrature rule for Fourier-type
highly oscillatory integrals in the presence of stationary points, J. Comput. And
Appl. Math., 395, (2021) 113592. (Q1)
[3] H. Ranjbar and F. Ghoreishi, A Hermite collocation method for approximating
a class of highly oscillatory integral equations using new Gaussian radial basis
functions, Calcolo 58 (2), (2021) 1-23. (Q1)
[4] R. Ghaffari, F. Ghoreishi, A low-dimensional compact finite difference
Method on Graded Meshes for time-fractional diffusion Equations,
Computational Methods in Applied Mathematics, 21(4) (2021) 827-840.
[5] C. G. Keshavarzi, F. Ghoreishi, Numerical solution of the Allen-Cahn
equation by using ”shifted” surface spline radial basis functions, Iranian
Journal of Numerical Analysis and Optimization, 10 (2), 177-196.
[6] R. Ghaffari, F. Ghoreishi, Error Analysis of the reduced RBF Model Based on
POD Method For Time Fractional Partial Differential Equations, Acta Appl.
Math., 168 (1), (2020) 33-55.
[7] F. Ghoreishi, C. G. Keshavarzi, Preconditioning RBF collocation method by
adapted finite difference matrix, Advances in Computational Mathematics, 45(5)
(2020), 3293-3325. (Q1)
[8] R. Ghaffari and F. Ghoreishi, Reduced Collocation Method for Time-Dependent
Parametrized Partial Differential Equations , Bulletin Iran. Math. Soci., V. 45,
(2019) 1487–1504.
[9] R. Ghaffari and F. Ghoreishi, Reduced spline method based on a proper orthogonal
decomposition technique for fractional sub-diffusion equations, Appl. Numer. Math.,
V. 137 (2019) 62-79. (Q1)
[10 ] F. Ghoreishi and E. Farahbakhsh, The Laguerre Collocation Method for
the Third Kind Integral Equations on Unbounded Domains, Comput. Meth.
Appl. Math., DE GRUYTER, 16, 2 (2016) 245-256.
[11 ] P. Mokhtary, F. Ghoreishi, H. M. Srivastava, The Mntz-Legendre Tau
method for fractional differential equations Appl. Math. Model. 40(2)
(2016) 671-684. (Q1)
[12 ] A. Peiravi and F. Ghoreishi, Numerical solutions based on Chebyshev
collocation method for singularly perturbed delay parabolic PDEs, Math. Meth.
Appl. Sci., 37, 14 (2014) 2112-2119.
[13 ] M. Khasi, F. Ghoreishi and M. Hadizadeh, Numerical analysis of a high order
method for state-dependent delay integral equations, Numerical Algorithms, 66,
1 (2014) 177-201.
[14 ] M. Mokhtary and F. Ghoreishi, Convergence Analysis of Spectral Tau Method
for Fractional Riccati Differential Equations, Bull. Iran. Math. Soc., 40, 5
(2014) 1275-1290.
[15] P Mokhtary, F. Ghoreishi, Convergence analysis of the operational Tau method
for Abel-type Volterra integral equations Elect. Trans. Numer. Anal. 41, 1 (2014)
289-305.
[16 ] P. Mokhtary and F. Ghoreishi, Spectral Collocation method for multi order
fractional differential equations, Int. J. Comput. Methods 11, 5 (2014)13500728.
[17 ] F. Ghanbari and F. Ghoreishi, Convergence Analysis of the Pseudospectral
method for linear DAEs of Index-2, Int. J. Comput. Methods, 10, 4 (2013) .
[18 ] S. Pishbin, F. Ghoreishi, M Hadizadeh, The semi-explicit Volterra integral
algebraic equations with weakly singular kernels: The numerical treatments, J.
Comput. Appl. Math., 245, 9 (2013) 121-132.
[19 ] F. Goodarzi, M. Hadiizadeh, F. Ghoreishi, An interval solution for the n-th
order linear ODEs with interval initial conditions, Mathematical Communications,
18, 1 (2013) 257-270.
[20 ] F. Ghoreishi, M. Hadizadeh, S. Pishbin, On the Convergence Analysis of the
Spline Collocation Method for System of Integral Algebraic Equations of Index-
2, Int. J. Comput. Methods, 9, 4 (2012) 1250048.
[21 ] M. Hadizadeh, F. Ghoreishi and S. Pishbin, Jacobi Spectral Solution for
Integral-Algebraic Equations of Index-2, Appl. Numer. Math. 61,1 ( 2011) 131-
148.
[22 ] S. Pishbin, F. Ghoreishi and M. Hadizadeh, A posteriori error estimation for
the Legendre collocation method applied to Integral-Algebraic Volterra
equations, Elect. Trans. Numer. Anal., 38,10 (2011) 327-346.
[23 ] B. Fakhr Kazemi, F. Ghoreishi, Error estimate in fractional differential equations
using multiquadratic radial basis functions, J. Comput. Appl. Math., 245
(2013) 131-147.
[24 ] P. Mokhtary, F. Ghoreishi, The L2-Convergence of the Legendre Spectral
Tau Matrix Formulation for Nonlinear Fractional Integro Differential Equations,
Numerical Algorithms, 58, 4 (2011) 475-496.
[25 ] F. Ghoreishi and S. Yazdani, An Extension of the Spectral Tau Method for
Numerical Solution of Multi-order Fractional Differential Equations with
Convergence Analysis, Comput. Math. Appl., 61, 1 (2011) 30-43.
[26 ] F. Ghoreishi and M. Hadizadeh, Numerical Computation of the Tau
Approximation for the Volterra-Hammerstein Integral Equations, Numer.
Algorithms, 52, 4 (2009) 541-559.
[27] F. Ghoreishi and S. M. Hosseini, Integration matrix based on arbitrary grids
with a preconditioner for pseudospectral method, J. Comput. Appl. Math.,
214, 1 (2008) 274-287.
[28 ] F. Ghoreishi and S. M. Hosseini, The Tau Method and a New Preconditioner,
J. Comput. Appl. Math. 163, 2 (2004) 351-379.
[29 ] F. Ghoreishi and S. M. Hosseini, A Preconditioned Implementation of
Pseudospectral methods on arbitrary grids, Appl. Math. Comput. 148, 1 (2004)
15-34.
[30 ] M. T. Darvishi and F. Ghoreishi, Multidomain and preconditioning Schemes
for Computing Higher Derivatives. Far East J. Math. Sci. (FJMS), 1, 2 (1999)
297-316.
[31 ] M. T. Darvishi and F. Ghoreishi, Error Reduction for Higher Derivatives of
Chebyshev Collocation Method Using Preconditioning and Domain
Decomposition., Korean J. Comput. Appl. Math. 6, 2 (1999) 421-435.
Refereed National and International Conference Proceedings:
[32 ] M. Hosseini, F. Ghoreishi, A Preconditioned Pseudospectral Method for
Fredholm Integro Differential Equations, Modelling 2005, The Third IMACS
Conference on Mathematical Modelling and Computational Methods in Applied
Sciences and Engineering, Czech Republic, 4-8 July 2005.
[33 ] F. Ghoreishi, Efficient Preconditioning of the Pseudospectral Method for
Nonlinear Two Dimensional Heat Equations, 8th International Seminar of
Differential Equations, Dynamical Systems and Their Applications, Isfahan
University of Technology, Isfahan, Iran, (deds8) July, 2008.
[34 ] P. Mokhtary and F. Ghoreishi, Numerical solution of Fractional Integro
Differential Equations by Galerkin Method with an error estimation, 40th Annual
Iranian Mathematics Conference, Tehran, Iran, Sharif univ, (AIMC40) 2009.
[35 ] F. Ghoreishi and E. Farahbakhsh, New Birkhoff-Type Quadrature formula for
the third kind integral equations on unbounded domain, 5th Iranian conferene
on applied mathematics, 8-10 Sep. 2013.
[36 ] F. Ghoreishi and E. Farahbakhsh, Laguerre Collocation Method for the Third
Kind Integral Equations on Unbounded Domains, 10th Seminar on Diff. Equ.
Dyn. Sys. 6-7 Nov. 2013.
[37 ] A. Baseri and F. Ghoreishi, Spline collocation method for stochastic differential
Equations, 5th Iranian conferene on applied mathematics, 8-10 Sep. 2013.
[38 ] F. Ghoreishi and M. Neemati, Spectral Collocation Method for Numerical
Solution of Functional Eigenvalue Ordinary and Partial Differential Equations,
8th Seminar on Diff. Equ. Dyn. Sys. 6-7 Nov. 2013.