[1 ] P. Mokhtary, F. Ghoreishi, Error analysis of the generalized Jacobi Galerkin method in nonlinear fractional differential equations, Progress in Fractional Differentiation & Applications, Accepted.

[2] H. Ranjbar and F. Ghoreishi, A Gaussian quadrature rule for Fourier-type highly oscillatory integrals in the presence of stationary points, J. Comput. And Appl. Math., 395, (2021) 113592. (Q1)

[3] H. Ranjbar and F. Ghoreishi, A Hermite collocation method for approximating a class of highly oscillatory integral equations using new Gaussian radial basis functions, Calcolo 58 (2), (2021) 1-23. (Q1)

[4] R. Ghaffari, F. Ghoreishi, A low-dimensional compact finite difference Method on Graded Meshes for time-fractional diffusion Equations, Computational Methods in Applied Mathematics, 21(4) (2021) 827-840.

[5] C. G. Keshavarzi, F. Ghoreishi, Numerical solution of the Allen-Cahn equation by using ”shifted” surface spline radial basis functions, Iranian Journal of Numerical Analysis and Optimization, 10 (2), 177-196.

[6] R. Ghaffari, F. Ghoreishi, Error Analysis of the reduced RBF Model Based on POD Method For Time Fractional Partial Differential Equations, Acta Appl. Math., 168 (1), (2020) 33-55.

[7] F. Ghoreishi, C. G. Keshavarzi, Preconditioning RBF collocation method by adapted finite difference matrix, Advances in Computational Mathematics, 45(5) (2020), 3293-3325. (Q1)

[8] R. Ghaffari and F. Ghoreishi, Reduced Collocation Method for Time-Dependent Parametrized Partial Differential Equations , Bulletin Iran. Math. Soci., V. 45, (2019) 1487–1504.

[9] R. Ghaffari and F. Ghoreishi, Reduced spline method based on a proper orthogonal decomposition technique for fractional sub-diffusion equations, Appl. Numer. Math., V. 137 (2019) 62-79. (Q1)

[10 ] F. Ghoreishi and E. Farahbakhsh, The Laguerre Collocation Method for the Third Kind Integral Equations on Unbounded Domains, Comput. Meth. Appl. Math., DE GRUYTER, 16, 2 (2016) 245-256.

[11 ] P. Mokhtary, F. Ghoreishi, H. M. Srivastava, The Mntz-Legendre Tau method for fractional differential equations Appl. Math. Model. 40(2) (2016) 671-684. (Q1)

[12 ] A. Peiravi and F. Ghoreishi, Numerical solutions based on Chebyshev collocation method for singularly perturbed delay parabolic PDEs, Math. Meth. Appl. Sci., 37, 14 (2014) 2112-2119.

[13 ] M. Khasi, F. Ghoreishi and M. Hadizadeh, Numerical analysis of a high order method for state-dependent delay integral equations, Numerical Algorithms, 66, 1 (2014) 177-201.

[14 ] M. Mokhtary and F. Ghoreishi, Convergence Analysis of Spectral Tau Method for Fractional Riccati Differential Equations, Bull. Iran. Math. Soc., 40, 5 (2014) 1275-1290.

[15] P Mokhtary, F. Ghoreishi, Convergence analysis of the operational Tau method for Abel-type Volterra integral equations Elect. Trans. Numer. Anal. 41, 1 (2014) 289-305.

[16 ] P. Mokhtary and F. Ghoreishi, Spectral Collocation method for multi order fractional differential equations, Int. J. Comput. Methods 11, 5 (2014)13500728.

[17 ] F. Ghanbari and F. Ghoreishi, Convergence Analysis of the Pseudospectral method for linear DAEs of Index-2, Int. J. Comput. Methods, 10, 4 (2013) .

[18 ] S. Pishbin, F. Ghoreishi, M Hadizadeh, The semi-explicit Volterra integral algebraic equations with weakly singular kernels: The numerical treatments, J. Comput. Appl. Math., 245, 9 (2013) 121-132.

[19 ] F. Goodarzi, M. Hadiizadeh, F. Ghoreishi, An interval solution for the n-th order linear ODEs with interval initial conditions, Mathematical Communications, 18, 1 (2013) 257-270.

[20 ] F. Ghoreishi, M. Hadizadeh, S. Pishbin, On the Convergence Analysis of the Spline Collocation Method for System of Integral Algebraic Equations of Index- 2, Int. J. Comput. Methods, 9, 4 (2012) 1250048.

[21 ] M. Hadizadeh, F. Ghoreishi and S. Pishbin, Jacobi Spectral Solution for Integral-Algebraic Equations of Index-2, Appl. Numer. Math. 61,1 ( 2011) 131- 148.

[22 ] S. Pishbin, F. Ghoreishi and M. Hadizadeh, A posteriori error estimation for the Legendre collocation method applied to Integral-Algebraic Volterra equations, Elect. Trans. Numer. Anal., 38,10 (2011) 327-346.

[23 ] B. Fakhr Kazemi, F. Ghoreishi, Error estimate in fractional differential equations using multiquadratic radial basis functions, J. Comput. Appl. Math., 245 (2013) 131-147.

[24 ] P. Mokhtary, F. Ghoreishi, The L2-Convergence of the Legendre Spectral Tau Matrix Formulation for Nonlinear Fractional Integro Differential Equations, Numerical Algorithms, 58, 4 (2011) 475-496.

[25 ] F. Ghoreishi and S. Yazdani, An Extension of the Spectral Tau Method for Numerical Solution of Multi-order Fractional Differential Equations with Convergence Analysis, Comput. Math. Appl., 61, 1 (2011) 30-43.

[26 ] F. Ghoreishi and M. Hadizadeh, Numerical Computation of the Tau Approximation for the Volterra-Hammerstein Integral Equations, Numer. Algorithms, 52, 4 (2009) 541-559.

[27] F. Ghoreishi and S. M. Hosseini, Integration matrix based on arbitrary grids with a preconditioner for pseudospectral method, J. Comput. Appl. Math., 214, 1 (2008) 274-287.

[28 ] F. Ghoreishi and S. M. Hosseini, The Tau Method and a New Preconditioner, J. Comput. Appl. Math. 163, 2 (2004) 351-379.

[29 ] F. Ghoreishi and S. M. Hosseini, A Preconditioned Implementation of Pseudospectral methods on arbitrary grids, Appl. Math. Comput. 148, 1 (2004) 15-34.

[30 ] M. T. Darvishi and F. Ghoreishi, Multidomain and preconditioning Schemes for Computing Higher Derivatives. Far East J. Math. Sci. (FJMS), 1, 2 (1999) 297-316.

[31 ] M. T. Darvishi and F. Ghoreishi, Error Reduction for Higher Derivatives of Chebyshev Collocation Method Using Preconditioning and Domain Decomposition., Korean J. Comput. Appl. Math. 6, 2 (1999) 421-435.

Refereed National and International Conference Proceedings:

[32 ] M. Hosseini, F. Ghoreishi, A Preconditioned Pseudospectral Method for Fredholm Integro Differential Equations, Modelling 2005, The Third IMACS Conference on Mathematical Modelling and Computational Methods in Applied Sciences and Engineering, Czech Republic, 4-8 July 2005.

[33 ] F. Ghoreishi, Efficient Preconditioning of the Pseudospectral Method for Nonlinear Two Dimensional Heat Equations, 8th International Seminar of Differential Equations, Dynamical Systems and Their Applications, Isfahan University of Technology, Isfahan, Iran, (deds8) July, 2008.

[34 ] P. Mokhtary and F. Ghoreishi, Numerical solution of Fractional Integro Differential Equations by Galerkin Method with an error estimation, 40th Annual Iranian Mathematics Conference, Tehran, Iran, Sharif univ, (AIMC40) 2009.

[35 ] F. Ghoreishi and E. Farahbakhsh, New Birkhoff-Type Quadrature formula for the third kind integral equations on unbounded domain, 5th Iranian conferene on applied mathematics, 8-10 Sep. 2013.

[36 ] F. Ghoreishi and E. Farahbakhsh, Laguerre Collocation Method for the Third Kind Integral Equations on Unbounded Domains, 10th Seminar on Diff. Equ. Dyn. Sys. 6-7 Nov. 2013.

[37 ] A. Baseri and F. Ghoreishi, Spline collocation method for stochastic differential Equations, 5th Iranian conferene on applied mathematics, 8-10 Sep. 2013.

[38 ] F. Ghoreishi and M. Neemati, Spectral Collocation Method for Numerical Solution of Functional Eigenvalue Ordinary and Partial Differential Equations, 8th Seminar on Diff. Equ. Dyn. Sys. 6-7 Nov. 2013.


 

Copyright © 2010 - All Rights Reserved.

.