1 |
Logistics, Intro, Problems |
Lecture 1a- Slides
Lecture 1b-Slides
|
Lecture 1- Aparat
Lecture 1- Youtube
|
2 |
Probabilistic Modeling, Generative Models, Complexities
|
Lecture 2- Slides
|
Lecture 2- Aparat
Lecture 2- Youtube
|
3 |
Independence Reduces Complexity |
Lecture 3- Slides
|
Lecture 3- Aparat
Lecture 3- Youtube
|
4 |
Conditional Independence |
Lecture 4- Slides
|
Lecture 4- Aparat
Lecture 4- Youtube
|
5 |
Bayesian Nets |
Lecture 5-Slides
|
Lecture 5- Aparat
Lecture 5- Youtube
|
6 |
Markov Random Fields |
Lecture 6-Slides
Lecture 6- Notes
|
Lecture 6- Aparat
Lecture 6- Youtube
|
7 |
Flow of Influence, I-MAP |
Lecture 7-Slides
Homework 1
|
Lecture 7- Aparat
Lecture 7- Youtube
|
8 |
Representing CPDs |
Lecture 8- Slides
Lecture 8- Notes
|
Lecture 8- Aparat
Lecture 8- Youtube
|
9 |
Continuous CPDs, Temporal Models |
Lecture 9- Slides
Lecture 9- Notes
|
Lecture 9- Aparat
Lecture 9- Youtube
|
10 |
Parameter Sharing, MRF Representation
|
Lecture 10- Slides
Lecture 10- Notes
|
Lecture 10- Aparat
Lecture 10- Youtube
|
11 |
Conditional Random Fields |
Lecture 11- Slides
|
Lecture 11- Aparat
Lecture 11- Youtube
|
12 |
Introduction to Inference, Variable Elimination
|
Lecture 12- Slides
|
Lecture 12- Aparat
Lecture 12- Youtube
|
13 |
Junction Tree Message Passing, Belief Propagation in
Junction Trees
|
Lecture 13- Slides
Lecture 13- Notes
Homework 2
|
Lecture 13- Aparat
Lecture 13- Youtube
|
14 |
Loopy Belief Propagation |
Lecture 14- Slides
Lecture 14- Notes
|
Lecture 14- Aparat
Lecture 14- Youtube
|
15 |
MAP Inference, Max Marginals |
Lecture 15- Slides
Lecture 15- Notes
|
Lecture 15- Aparat
Lecture 15- Youtube
|
16 |
Map Inference, Max-sum VE and Message Passing, Graph
Cuts
|
Lecture 16- Slides
Lecture 16- Notes
Homework 3
|
Lecture 16- Aparat
Lecture 16- Youtube
|
17 |
Recursive Bayesian Filtering, Intro to Kalman Filter
|
Lecture 17- Slides
Lecture 17- Notes
|
Lecture 17- Aparat
Lecture 17- Youtube
|
18 |
Kalman Filter, Linearization and Extended Kalman Filter,
Unscented Kalman Filter, Particle Filter
|
Lecture 18- Slides
Lecture 18- Notes
Homework 4
|
Lecture 18- Aparat
Lecture 18- Youtube
|
19 |
Introduction to Sampling, Approximate Inference with
Sampling
|
Lecture 19- Slides
|
Lecture 19- Aparat
Lecture 19- Youtube
|
20 |
Sampling from Bayes Nets, Introduction to Markov Chain
Monte Carlo (MCMC) methods
|
Lecture 20- Slides
Lecture 20- Notes
|
Lecture 20- Aparat
Lecture 20- Youtube
|
21 |
Markov Chain Monte Carlo (MCMC), Gibbs Sampling
|
Lecture 21- Slides
Lecture 21- Notes
|
Lecture 21- Aparat
Lecture 21- Youtube
|
22 |
Introduction to Learning, Parameter Learning in Bayesian
Networks
|
Lecture 22- Slides
Lecture 22- Notes
|
Lecture 22- Aparat
Lecture 22- Youtube
|
23 |
MRF Parameter Learning |
Lecture 23- Slides
Lecture 23- Notes
|
Lecture 23- Aparat
Lecture 23- Youtube
|
24 |
MCMC-learning, Contrastive Divergence CRF Parameter
Learning
|
Lecture 24- Slides
Lecture 24- Notes
Homework 5
|
Lecture 24- Aparat
Lecture 24- Youtube
|
25 |
Learning with Incomplete Data, Latent Variable Models
the Expectation-Maximization Algorithm
|
Lecture 25- Slides
Lecture 25- Notes
|
Lecture 25- Aparat
Lecture 25- Youtube
|
26 |
Variational Inference, Mean Field |
Lecture 26- Slides
Lecture 26- Notes
|
Lecture 26- Aparat
Lecture 26- Youtube
|
27 |
Variational Inference on Latent Variable Models, ELBO
|
Lecture 27- Slides
Lecture 27- Notes
|
Lecture 27- Aparat
Lecture 27- Youtube
|
28 |
Generative Models, Restricted Boltzman Machines, Deep
Belief Networks
|
Lecture 28- Slides
Lecture 28- Notes
|
Lecture 28- Aparat
Lecture 28- Youtube
|
29 |
Variational Autoencoders |
Lecture 29- Slides
Lecture 29- Notes
|
Lecture 29- Aparat
Lecture 29- Youtube
|
30 |
Generative Adversarial Networks |
Lecture 30- Slides
Lecture 30- Notes
|
Lecture 30- Aparat
Lecture 30- Youtube
|
31 |
Normalizing Flows |
Lecture 31- Slides
|
Lecture 31- Aparat
Lecture 31- Youtube
|
32 |
Diffusion Models |
Lecture 32- Slides
Final Project
|
Lecture 32- Aparat
Lecture 32- Youtube
|