Probabilistic Graphical Models - Spring 2024



Teaching Assistants
Sara Farahani
Milad Gholamrezanejad


Resources


Session Topic Course Material Videos
1 Logistics, Intro, Problems Lecture 1a- Slides

Lecture 1b-Slides
Lecture 1- Aparat

Lecture 1- Youtube
2 Probabilistic Modeling, Generative Models, Complexities Lecture 2- Slides Lecture 2- Aparat

Lecture 2- Youtube
3 Independence Reduces Complexity Lecture 3- Slides Lecture 3- Aparat

Lecture 3- Youtube
4 Conditional Independence Lecture 4- Slides Lecture 4- Aparat

Lecture 4- Youtube
5 Bayesian Nets Lecture 5-Slides Lecture 5- Aparat

Lecture 5- Youtube
6 Markov Random Fields Lecture 6-Slides

Lecture 6- Notes
Lecture 6- Aparat

Lecture 6- Youtube
7 Flow of Influence, I-MAP Lecture 7-Slides

Homework 1
Lecture 7- Aparat

Lecture 7- Youtube
8 Representing CPDs Lecture 8- Slides

Lecture 8- Notes
Lecture 8- Aparat

Lecture 8- Youtube
9 Continuous CPDs, Temporal Models Lecture 9- Slides

Lecture 9- Notes
Lecture 9- Aparat

Lecture 9- Youtube
10 Parameter Sharing, MRF Representation Lecture 10- Slides

Lecture 10- Notes
Lecture 10- Aparat

Lecture 10- Youtube
11 Conditional Random Fields Lecture 11- Slides Lecture 11- Aparat

Lecture 11- Youtube
12 Introduction to Inference, Variable Elimination Lecture 12- Slides Lecture 12- Aparat

Lecture 12- Youtube
13 Junction Tree Message Passing, Belief Propagation in Junction Trees Lecture 13- Slides

Lecture 13- Notes

Homework 2
Lecture 13- Aparat

Lecture 13- Youtube
14 Loopy Belief Propagation Lecture 14- Slides

Lecture 14- Notes
Lecture 14- Aparat

Lecture 14- Youtube
15 MAP Inference, Max Marginals Lecture 15- Slides

Lecture 15- Notes
Lecture 15- Aparat

Lecture 15- Youtube
16 Map Inference, Max-sum VE and Message Passing, Graph Cuts Lecture 16- Slides

Lecture 16- Notes

Homework 3
Lecture 16- Aparat

Lecture 16- Youtube
17 Recursive Bayesian Filtering, Intro to Kalman Filter Lecture 17- Slides

Lecture 17- Notes
Lecture 17- Aparat

Lecture 17- Youtube
18 Kalman Filter, Linearization and Extended Kalman Filter, Unscented Kalman Filter, Particle Filter Lecture 18- Slides

Lecture 18- Notes

Homework 4
Lecture 18- Aparat

Lecture 18- Youtube
19 Introduction to Sampling, Approximate Inference with Sampling Lecture 19- Slides Lecture 19- Aparat

Lecture 19- Youtube
20 Sampling from Bayes Nets, Introduction to Markov Chain Monte Carlo (MCMC) methods Lecture 20- Slides

Lecture 20- Notes
Lecture 20- Aparat

Lecture 20- Youtube
21 Markov Chain Monte Carlo (MCMC), Gibbs Sampling Lecture 21- Slides

Lecture 21- Notes
Lecture 21- Aparat

Lecture 21- Youtube
22 Introduction to Learning, Parameter Learning in Bayesian Networks Lecture 22- Slides

Lecture 22- Notes
Lecture 22- Aparat

Lecture 22- Youtube
23 MRF Parameter Learning Lecture 23- Slides

Lecture 23- Notes
Lecture 23- Aparat

Lecture 23- Youtube
24 MCMC-learning, Contrastive Divergence CRF Parameter Learning Lecture 24- Slides

Lecture 24- Notes

Homework 5
Lecture 24- Aparat

Lecture 24- Youtube
25 Learning with Incomplete Data, Latent Variable Models the Expectation-Maximization Algorithm Lecture 25- Slides

Lecture 25- Notes
Lecture 25- Aparat

Lecture 25- Youtube
26 Variational Inference, Mean Field Lecture 26- Slides

Lecture 26- Notes
Lecture 26- Aparat

Lecture 26- Youtube
27 Variational Inference on Latent Variable Models, ELBO Lecture 27- Slides

Lecture 27- Notes
Lecture 27- Aparat

Lecture 27- Youtube
28 Generative Models, Restricted Boltzman Machines, Deep Belief Networks Lecture 28- Slides

Lecture 28- Notes
Lecture 28- Aparat

Lecture 28- Youtube
29 Variational Autoencoders Lecture 29- Slides

Lecture 29- Notes
Lecture 29- Aparat

Lecture 29- Youtube
30 Generative Adversarial Networks Lecture 30- Slides

Lecture 30- Notes
Lecture 30- Aparat

Lecture 30- Youtube
31 Normalizing Flows Lecture 31- Slides Lecture 31- Aparat

Lecture 31- Youtube
32 Diffusion Models Lecture 32- Slides

Final Project
Lecture 32- Aparat

Lecture 32- Youtube


Exams
Midterm Final
Questions File Questions File