| English | Farsi
subglobal1 link | subglobal1 link | subglobal1 link | subglobal1 link | subglobal1 link | subglobal1 link | subglobal1 link
subglobal2 link | subglobal2 link | subglobal2 link | subglobal2 link | subglobal2 link | subglobal2 link | subglobal2 link
subglobal3 link | subglobal3 link | subglobal3 link | subglobal3 link | subglobal3 link | subglobal3 link | subglobal3 link
subglobal4 link | subglobal4 link | subglobal4 link | subglobal4 link | subglobal4 link | subglobal4 link | subglobal4 link
subglobal5 link | subglobal5 link | subglobal5 link | subglobal5 link | subglobal5 link | subglobal5 link | subglobal5 link
subglobal6 link | subglobal6 link | subglobal6 link | subglobal6 link | subglobal6 link | subglobal6 link | subglobal6 link
subglobal7 link | subglobal7 link | subglobal7 link | subglobal7 link | subglobal7 link | subglobal7 link | subglobal7 link
subglobal8 link | subglobal8 link | subglobal8 link | subglobal8 link | subglobal8 link | subglobal8 link | subglobal8 link

S. Ali A. Moosavian

 

Design and Manufacturing of an Industrial Welding Robot

Automatic Pipe Welding Robot was designed for automated welding of nozzles to headers used in power plant boilers. The radial welding of these pipes with different radii necessitates saddle curves tracking with adjustable dimensions. The mechanical subsystems controlled by individual micro-controllers being supervised by a central controller, provide a fully automated solution to this application, despite the geometrical limitations. A saddle curve is formed at the intersection of  nozzle to the header. The welding torch needs three degrees of freedom to go through this curve:

• A revolute motion around the nozzle;

• A prismatic movement along the nozzle axis;

• A third degree of freedom is used to  move the torch along the nozzle radius.

These three motions are supported by 3 gear groups. A general view of this mechanism is shown in the figure.

 

 

 

Back to Main | Contact Web Master | ©2019 S. Ali A. Moosavian