Mathematics
for artificial intelligence
(fall 2024)

Instructor Photo

Dr Behrooz Nasihatkon

Instructor


Teaching Assistant

Mehran Tamjidi

Teaching Assistant

Teaching Assistant

Ali Asheri Nejad

Teaching Assistant

Teaching Assistant

Morteza Entezari

Teaching Assistant

References:

The main parts of the lesson:

Linear Algebra and Matrix Analysis

Multivariate Calculus

Basic Probability and Statistics

Optimization

Session Topic Videos Slides Labs Assignments
Session1 Introduction and Logistics Aparat, Youtube lecture1 Lab0, Lab1 Lab1-files
Session2 Vectors, Vector Space, Span, Basis, Coordinates lecture2
Session3 Column space , Row space , Linear Subspace lecture3
Session4 linear maps, matrix multiplication, matrix rank lecture4
Session5 Linear Equations, Singular and Non-singular matrices lecture5 Lab2, Lab2-files
Session6 null space, solution to general linear equations lecture6 Home work1
Session7 Homogeneous Equations, Vector Norm, Orthogonality lecture7 Lab3, Lab3-files
Session8 rthonormal Basis, QR decomposition, least squares lecture8
Session9 Determinant, Intro to Eigenvalues and Eigenvectors lecture9
Session10 Eigenvalues and Eigenvectors, Algebraic Multiplicity lecture10
Session11 Complex Matrices, Diagonalization lecture11 Home work2
Session12 Properties of Positive Definite Matrices lecture12
Session13 SVD, Matrix Norm, Low-rank approximation lecture13
Session14 Noisy Homogeneous Equations, Affine spaces
Session15 Derivative of dot product lecture15 Home work3
Session16 The gradient vector
Session17 functions of matrices, linear regression lecture17
Session18 Jacobian Matrix, Chain Rule, Automatic Differentiation lecture18
Session19 Second Derivatives, Multilinear maps and Tensors, the Hessian Matrix lecture19
Session20 Modeling Uncertainty, Random Variables, Probability mass lecture20 Lab4, Lab4-files
Session21 Joint distribution, Marginal Distribution, Conditional Distribution lecture21
Session22 Probabilistic Independence lecture22 Lab5, Lab5-files
Session23 Statistical Measures: mean, median, mode, variance, standard deviation, covariance matrix lecture23
Session24 Common Probability Distributions lecture24 Home work4
Session25 Linear Equations, Singular and Non-singular matrices lecture25
Session26 Sampling lecture26
Session27 Statistical Estimation, Maximum Likelihood Solution, Introduction to Optimization lecture27
Session28 Gradient Descent, SGD, Momentum, Quadratic Approximation, Newton's method lecture28