Mathematics for Artificial Intelligence - Fall 2023

previous offerings

Instructor:

Behrooz Nasihatkon

Teaching Assistants:

References:

Schedule

Session Topic Videos Slides Labs Assignments
PART I - Linear Algebra and Matrix Analysis
Session1
  • Introduction, Motivation, and Applications
Aparat
Youtube
Math4AI - Lecture 1.pdf Lab 0
Lab 1
Lab 1 - Files
Assignment 1
Session2
  • Vectors and Vector Spaces, Linear Combination, Span
Aparat
Youtube
Math4AI - Lecture 2.pdf
Session3
  • Linear Independence, Basis Vectors, Coordinates, Linear Subspace, Column and Row Spaces, Linear Transformations
Aparat
Youtube
Math4AI - Lecture 3.pdf Lab 2
Lab 2 - Files
Session4
  • Matrix Multiplications, dot product, inner product space, Outer Product, Matrix Rank
Aparat
Youtube
Math4AI - Lecture 4.pdf
Session5
  • Linear Equations, Singular and Non-singular matrices, the Inverse Matrix
Aparat
Youtube
Math4AI - Lecture 5.pdf Lab 3
Lab 3 - Files
Session6
  • LU decomposition, Null space, all solutions to General Linear Equations
Aparat
Youtube
Math4AI - Lecture 6.pdf
Session7
  • Homogeneous Equations, Orthogonal Projection
Aparat
Youtube
Math4AI - Lecture 7.pdf Lab 4
Lab 4 - Files
Session8
  • Orthonormal Basis, Orthogonal Matrices, QR decomposition, noisy measurements, Least Squares
Aparat
Youtube
Math4AI - Lecture 8.pdf
Session9
  • Determinant, Intro to Eigenvalues
Aparat
Youtube
Math4AI - Lecture 9.pdf
Session10
  • Eigenvalues and Eigenvectors, Algebraic Multiplicity, Eigenspaces, Geometric Multiplicity
Aparat
Youtube
Math4AI - Lecture 10.pdf Assignment 2
Session11
  • Complex Matrices, Diagonalization, Eigendecomposition of Symmetric and Hermitian Matrices, Positive Definite Matrices
Aparat
Youtube
Math4AI - Lecture 11.pdf
Session12
  • Properties of Positive Definite Matrices, Cholesky Decomposition, Introduction to Singular Value Decomposition, Skinny SVD, Compact SVD
Aparat
Youtube
Math4AI - Lecture 12.pdf
Session13
  • Noisey Homogeneous Equations, Matrix Norms, Low-rank Approximation and Eckart–Young–Mirsky theorem
Aparat
Youtube
Math4AI - Lecture 13.pdf Lab 5
Lab 5 - Files
Session14
  • Eigen decomposition and optimization, SVD and optimization, Noisy Homogeneous Equations, Affine spaces, affine maps, nonlinear functions, linearization and derivatives
Aparat
Youtube
Math4AI - Lecture 14.pdf
PART II - Multivariate Calculus
Session15
  • vector-valued and matix-valued functions of one variable, differentiability classes, multivariate functions, directional derivatives, the gradient vector, linearization of multivriate functions
Aparat
Youtube
Math4AI - Lecture 15.pdf
Session16
  • Examples of calculating gradient, Definition of differentiability, calculate gradients with inner product trick
Aparat
Youtube
Math4AI - Lecture 16.pdf Assignment 3
Session17
  • Functions of matrices, linear regression, vector valued multivariate functions, Jacobian
Aparat
Youtube
Math4AI - Lecture 17.pdf
Session18
  • Jacobian Matrix, Chain Rule, Automatic Differentiation, Backpropagation
Aparat
Youtube
Math4AI - Lecture 18.pdf
Session19
  • Second Derivatives, Multilinear maps and Tensors, the Hessian Matrix, Quadratic Functions, Quadratic Approximation, Taylor Series
Aparat
Youtube
Math4AI - Lecture 19.pdf Assignment 4
PART III - Basic Probability and Statistics
Session20
  • Modeling Uncertainty, Random Variables, Probability Mass and Density Functions, Operations on Random Variables, Cumulative Distribution
Aparat
Youtube
Math4AI - Lecture 20.pdf
Session21
  • Joint distribution, Marginal Distribution, Conditional Distribution, Probabilistic Modeling, Generative vs Discriminative Models
Aparat
Youtube
Math4AI - Lecture 21.pdf
Session22
  • Probabilistic Independence, Conditional Independence,
Aparat
Youtube
Math4AI - Lecture 22.pdf
Session23
  • Statistical Measures, mean, median, mode, variance, standard deviation, covariance matrix
Aparat
Youtube
Math4AI - Lecture 23.pdf
Session24
  • Commom Probability Distributions, Bernoulli distribution, Binomial distribution, Poisson Distribution, Unifrom Distribution, Exponential Distribution, Gaussian Distribution, Multivariate Gaussian Distribution.
Aparat
Youtube
Math4AI - Lecture 24.pdf
Session25
  • More on Gaussian Distribution, Introduction to sampling, Monte Carlo methods, Generating Samples, Pseudo Random Numbers, roulette wheel selection
Aparat
Youtube
Session26
  • Sampling Continuous Distributions, Sampling Multivariable Distributions, Sampling from Multivariate Gaussian Distribution
Aparat
Youtube
Math4AI - Lecture 26.pdf
PART IV - Optimization
Session27
  • Statistical Estimation, Maximum Likelihood Solution, Introduction to Optimization
Aparat
Youtube
Math4AI - Lecture 27.pdf
Session28
  • Gradient Descent, SGD, Momentum, Quadratic Approximation, Newton's method
Aparat
Youtube
Math4AI - Lecture 28.pdf
Session29
  • Quasi-Newthon methods, Nonlinear Least Squares, Gauss-Newton, Levenberg-Marquardt, Constrained Optimization, Equality Constraints, Lagrange Multipliers
Aparat
Youtube
Math4AI - Lecture 29.pdf
Session30
  • Multiple Equality Constraints, Convex Sets, Convex Hull, Supporting Hyperplane
Aparat
Youtube
Math4AI - Lecture 30.pdf
Session31
  • Convex Functions and their properties
Aparat
Youtube
Math4AI - Lecture 31.pdf
Session32
  • Inequality Constraints, Primal and Dual Problems, Strong and Weak Convexity
Aparat
Youtube
Math4AI - Lecture 32.pdf
Session33
  • Convex Optimization, Duality examples, Suboptimality Check, KKT conditions
Aparat
Youtube
Math4AI - Lecture 33.pdf